智能肺气肿诊断信息处理系统及方法、信息数据处理终端的制作方法
专利摘要:本发明属于诊断信息评估技术领域,公开了一种智能肺气肿诊断信息处理系统及方法、信息数据处理终端,肺部图采集模块、呼吸频率采集模块、声音采集模块、中央控制模块、标注模块、测试模块、诊断模块、评估模块、显示模块。本发明通过标注模块不仅可以节约医生诊断的时间、提高诊断效率,同时可以满足肺气肿病灶自动标注的需求,大幅减轻医生标注图像数据的工作量,该方法在建设呼吸系统疾病的标准影像数据集方面具有重要意义;并且简化了肺气肿诊疗过程中的流程,降低了患者看病费用;同时,通过测试模块减少了人工指导的差异性,大大提高了肺功能测试的应用范围;能够有效避免肺功能测试出现无效的情况,提高了肺功能测试的准确性。
专利说明:智能肺气肿诊断信息处理系统及方法、信息数据处理终端 技术领域 本发明属于诊断信息评估技术领域,尤其涉及一种智能肺气肿诊断信息处理系统及方法、信息数据处理终端。 背景技术 目前,最接近的现有技术:肺气肿是指终末细支气管远端的气道弹性减退,过度膨胀、充气和肺容积增大或同时伴有气道壁破坏的病理状态。按其发病原因肺气肿有如下几种类型:老年性肺气肿、代偿性肺气肿、间质性肺气肿、灶性肺气肿、旁间隔性肺气肿、阻塞性肺气肿。早期可无症状或仅在劳动、运动时感到气短。随着肺气肿进展,呼吸困难程度随之加重,以至稍一活动甚或完全休息时仍感气短。患者感到乏力、体重下降、食欲减退、上腹胀满。伴有咳嗽、咳痰等症状,典型肺气肿者胸廓前后径增大,呈桶状胸,呼吸运动减弱,语音震颤减弱,叩诊过清音,心脏浊音界缩小,肝浊音界下移,呼吸音减低,有时可听到干、湿啰音,心音低远。然而,现有肺气肿诊断过程中不能在CT影像上标记出肺气肿的位置和区域大小等信息;同时,在肺功能测试过程中,受试者通常是在医护人员的指导下进行呼吸,这就为限制了肺功能测试的应用范围;且人为指导差异性大,降低了肺功能测试结果准确性。 综上所述,现有技术存在的问题是:现有肺气肿诊断过程中不能在CT影像上标记出肺气肿的位置和区域大小等信息;同时,在肺功能测试过程中,受试者通常是在医护人员的指导下进行呼吸,这就为限制了肺功能测试的应用范围;且人为指导差异性大,降低了肺功能测试结果准确性。 发明内容 针对现有技术存在的问题,本发明提供了一种智能肺气肿诊断信息处理系统及方法、信息数据处理终端。 本发明是这样实现的,一种智能肺气肿诊断信息处理系统,所述智能肺气肿诊断信息处理系统包括: 肺部图采集模块,与中央控制模块连接,用于通过CT检查仪采集患者肺部CT图像; 呼吸频率采集模块,与中央控制模块连接,用于通过呼吸检测仪采集患者呼吸频率数据; 声音采集模块,与中央控制模块连接,用于通过声音传感器采集患者声音数据; 中央控制模块,与肺部图采集模块、呼吸频率采集模块、声音采集模块、标注模块、测试模块、诊断模块、评估模块、显示模块连接,用于通过主控机控制各个模块正常工作; 标注模块,与中央控制模块连接,用于通过标注程序对采集的CT图像标注肺气肿区域; 测试模块,与中央控制模块连接,用于通过测试设备对患者肺功能进行测试; 诊断模块,与中央控制模块连接,用于通过诊断程序根据采集的数据对患者肺气肿进行诊断; 评估模块,与中央控制模块连接,用于通过评估程序对患者肺气肿诊断结果进行评估; 显示模块,与中央控制模块连接,用于通过显示器显示采集的患者肺部CT图像、呼吸频率、声音数据及标注结果、测试结果、诊断结果、评估结果。 进一步,所述肺部图采集模块包括: 图像采集模块,与图像处理模块连接,通过CT获取肺部的图像; 图像处理模块,与图像处理模块连接,利用相关的模块对肺部图像进行处理; 图像编码模块,与图像处理模块连接,将处理完成的图像进行编码; 图像处理模块,与图像采集模块、图像处理模块、图像编码模块、图像压缩模块和图像传输模块连接,用以协调各个模块的正常运行; 图像压缩模块,与图像处理模块连接,将编码完成的图像进行压缩; 图像传输模块,与图像处理模块连接,将压缩完成的图像信息进行传递。 进一步,所述图像处理模块包括: 直方图分析模块,对图像的灰度分布进行描述,包括灰度均值、标准差; 图像清晰度增强模块,利用低通滤波、高通滤波、边缘检测等方法对肺部图像进行增强; 轮廓特征提取模块,对肺部图像的边部信息进行提取,其评价标准为轮廓提取精度、速度和稳定性; 颜色空间转换模块,对图像进行灰度处理和彩色处理。 进一步,所述声音采集模块包括: 声音信号源识别模块,根据信号源之间的统计独立特性结合观测信号,将信号源分离出来; 声音信号切换模块,将采集的语音信号转成成系统识别的语音信号,方便进行处理识别; 声音去噪模块,通过利用相应的算法对进行声音进行去噪; 声音增益模块,通过利用相应的软件,实现对音频的自动增益。 进一步,所述评估模块包括: 病症特征信息存储模块,储存大量相关的肺部相关的病症特征信息; 特征获取模块,提取检测出来的肺部特征信息和储存在储存模块中的特征; 特征信息比对模块,将提取完成后的特征信息建立相应的样本,对两个样本的相似度进行计算。; 特征相似度计算模块,通过利用相似度计算公式,计算两者特征的相似数值; 病情预测模块,根据计算出的相似数值进行判别,并且根据检测的肺部的相关信息,预测症状情况的未来变化; 评估结果输出模块,将相关的数据信息进行整理分类,并且将排版好的信息输出。 本发明的另一目的在于提供一种执行所述智能肺气肿诊断信息处理系统的智能肺气肿诊断信息处理方法,所述智能肺气肿诊断信息处理方法包括以下步骤: 第一步,通过肺部图采集模块利用CT检查仪采集患者肺部CT图像;通过呼吸频率采集模块利用呼吸检测仪采集患者呼吸频率数据;通过声音采集模块利用声音传感器采集患者声音数据; 第二步,中央控制模块通过标注模块利用标注程序对采集的CT图像标注肺气肿区域; 第三步,通过测试模块利用测试设备对患者肺功能进行测试; 第四步,通过诊断模块利用诊断程序根据采集的数据对患者肺气肿进行诊断; 第五步,通过评估模块利用评估程序对患者肺气肿诊断结果进行评估; 第六步,通过显示模块利用显示器显示采集的患者肺部CT图像、呼吸频率、声音数据及标注结果、测试结果、诊断结果、评估结果。 进一步,所述智能肺气肿诊断信息处理方法的标注方法如下: (1)通过图像处理程序完成图像影像报告、CT图像序列输入和图像标准化预处理; (2)在语音语义提取程序中根据词典的技术和规则模式匹配技术提取影像报告中的特征信息,即有关肺气肿描述的信息; (3)在肺气肿病灶提取程序中先对肺进行区域式划分,右肺由上自下每个区域的宽度相同,左肺在中间将分成两个区域;然后在肺部区域进行聚类分析提取肺气肿病灶; (4)根据步骤(3)计算结果计算得到各区域CT阈值,在输出与显示器中将各区域肺气肿区域标注出来,然后根据各区域CT阈值对各区域肺气肿及健康区域进行蒙色,同时对各区域肺气肿病灶位置精确定位,将肺气肿区域显示在CT图像中,并给出肺功能定量分析报告。 进一步,所述智能肺气肿诊断信息处理方法的测试方法如下: 1)从呼吸检测模型中选择当前呼吸检测阶段,所述呼吸检测模型包括多个呼吸检测阶段; 2)根据指示器输出的当前呼吸方式引导信号的方法进行呼吸,所述指示器在不同的呼吸检测阶段输出不同的呼吸方式引导信号; 3)采集当前呼吸检测阶段中的呼吸数据; 4)对所述呼吸数据进行计算,与预设条件进行比较,得到处理结果,所述指示器根据所述处理结果输出呼吸方式引导信号。 本发明的另一目的在于提供一种应用所述智能肺气肿诊断信息处理方法的信息数据处理终端。 本发明的优点及积极效果为:本发明通过标注模块将影像报告的气肿的位置、严重程度等信息直观的显示在CT图像上,那么不仅可以节约医生诊断的时间、提高诊断效率,同时可以满足肺气肿病灶自动标注的需求,大幅减轻医生标注图像数据的工作量,该方法在建设呼吸系统疾病的标准影像数据集方面具有重要意义;并且简化了肺气肿诊疗过程中的流程,降低了患者看病费用;同时,通过测试模块减少了人工指导的差异性,大大提高了肺功能测试的应用范围;能够有效避免肺功能测试出现无效的情况,提高了肺功能测试的准确性。 附图说明 图1是本发明实施例提供的智能肺气肿诊断信息处理系统结构示意图; 图2是本发明实施例提供的肺部图采集模块的结构示意图; 图3是本发明实施例提供的声音采集模块的结构示意图; 图4是本发明实施例提供的评估模块的结构示意图; 图中:1、肺部图采集模块;2、呼吸频率采集模块;3、声音采集模块;4、中央控制模块;5、标注模块;6、测试模块;7、诊断模块;8、评估模块;9、显示模块。 图5是本发明实施例提供的智能肺气肿诊断信息处理方法流程图。 具体实施方式 为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下。 针对现有技术存在的问题,本发明提供了一种智能肺气肿诊断信息处理系统及方法、信息数据处理终端,下面结合附图对本发明作详细的描述。 如图1所示,本发明实施例提供的智能肺气肿诊断信息处理系统包括:肺部图采集模块1、呼吸频率采集模块2、声音采集模块3、中央控制模块4、标注模块5、测试模块6、诊断模块7、评估模块8、显示模块9。 肺部图采集模块1,与中央控制模块4连接,用于通过CT检查仪采集患者肺部CT图像; 呼吸频率采集模块2,与中央控制模块4连接,用于通过呼吸检测仪采集患者呼吸频率数据; 声音采集模块3,与中央控制模块4连接,用于通过声音传感器采集患者声音数据; 中央控制模块4,与肺部图采集模块1、呼吸频率采集模块2、声音采集模块3、标注模块5、测试模块6、诊断模块7、评估模块8、显示模块9连接,用于通过主控机控制各个模块正常工作; 标注模块5,与中央控制模块4连接,用于通过标注程序对采集的CT图像标注肺气肿区域; 测试模块6,与中央控制模块4连接,用于通过测试设备对患者肺功能进行测试; 诊断模块7,与中央控制模块4连接,用于通过诊断程序根据采集的数据对患者肺气肿进行诊断; 评估模块8,与中央控制模块4连接,用于通过评估程序对患者肺气肿诊断结果进行评估; 显示模块9,与中央控制模块4连接,用于通过显示器显示采集的患者肺部CT图像、呼吸频率、声音数据及标注结果、测试结果、诊断结果、评估结果。 如图2所示,肺部图采集模块1包括: 图像采集模块,与图像处理模块连接,通过CT获取肺部的图像。 图像处理模块,与图像处理模块连接,利用相关的模块对肺部图像进行处理。 图像编码模块,与图像处理模块连接,将处理完成的图像进行编码。 图像处理模块,与图像采集模块、图像处理模块、图像编码模块、图像压缩模块和图像传输模块连接,用以协调各个模块的正常运行。 图像压缩模块,与图像处理模块连接,将编码完成的图像进行压缩。 图像传输模块,与图像处理模块连接,将压缩完成的图像信息进行传递。 所述图像处理模块包括: 直方图分析模块,对图像的灰度分布进行描述,包括灰度均值、标准差等。 图像清晰度增强模块,利用低通滤波、高通滤波、边缘检测等方法对肺部图像进行增强。 轮廓特征提取模块,对肺部图像的边部信息进行提取,其评价标准为轮廓提取精度、速度和稳定性。 颜色空间转换模块,对图像进行灰度处理和彩色处理。 如图3所示,声音采集模块3包括: 声音信号源识别模块,根据信号源之间的统计独立特性结合观测信号,将信号源分离出来。 声音信号切换模块,将采集的语音信号转成成系统识别的语音信号,方便进行处理识别。 声音去噪模块,通过利用相应的算法(例:小波去噪、低通滤波去噪等)对进行声音进行去噪。 声音增益模块,通过利用相应的软件,实现对音频的自动增益。 如图4所示,评估模块8包括: 病症特征信息存储模块,储存大量相关的肺部相关的病症特征信息。 特征获取模块,提取检测出来的肺部特征信息和储存在储存模块中的特征。 特征信息比对模块,将提取完成后的特征信息建立相应的样本,对两个样本的相似度进行计算。 特征相似度计算模块,通过利用相似度计算公式,计算两者特征的相似数值。 病情预测模块,根据计算出的相似数值进行判别,并且根据检测的肺部的相关信息,预测症状情况的未来变化。 评估结果输出模块,将相关的数据信息进行整理分类,并且将排版好的信息输出。 如图5所示,本发明提供的智能肺气肿诊断信息处理方法包括以下步骤: S501:通过肺部图采集模块利用CT检查仪采集患者肺部CT图像;通过呼吸频率采集模块利用呼吸检测仪采集患者呼吸频率数据;通过声音采集模块利用声音传感器采集患者声音数据; S502:中央控制模块通过标注模块利用标注程序对采集的CT图像标注肺气肿区域; S503:通过测试模块利用测试设备对患者肺功能进行测试; S504:通过诊断模块利用诊断程序根据采集的数据对患者肺气肿进行诊断; S505:通过评估模块利用评估程序对患者肺气肿诊断结果进行评估; S506:通过显示模块利用显示器显示采集的患者肺部CT图像、呼吸频率、声音数据及标注结果、测试结果、诊断结果、评估结果。 在本发明的优选实施例中,标注模块5标注方法如下: (1)通过图像处理程序完成图像影像报告、CT图像序列输入和图像标准化预处理; (2)在语音语义提取程序中根据词典的技术和规则模式匹配技术提取影像报告中的特征信息,即有关肺气肿描述的信息; (3)在肺气肿病灶提取程序中先对肺进行区域式划分,右肺由上自下每个区域的宽度相同,左肺在中间将分成两个区域;然后在肺部区域进行聚类分析提取肺气肿病灶; (4)根据步骤(3)计算结果计算得到各区域CT阈值,在输出与显示器中将各区域肺气肿区域标注出来,然后根据各区域CT阈值对各区域肺气肿及健康区域进行蒙色,同时对各区域肺气肿病灶位置精确定位,将肺气肿区域显示在CT图像中,并给出肺功能定量分析报告。 本发明提供的步骤(2)中影像报告中病灶信息的提取经过文本信息抽取得到文本特征,然后经过人工标注和众包方法标注文本特征,最后将标注的特征与建立的医疗词典库进行对比得到病灶结果信息。 本发明提供的步骤(3)分别采用均值聚类、高斯混合模型聚类、基于密度噪声的聚类以及凝聚层次聚类的方法区分健康组织和气肿组织,最后利用投票法选出均值聚类、高斯混合模型聚类、基于密度噪声的聚类以及凝聚层次聚类其中的一种进行区分健康组织和气肿组织,并确定气肿位置。 在本发明的优选实施例中,测试模块6测试方法如下: 1)从呼吸检测模型中选择当前呼吸检测阶段,所述呼吸检测模型包括多个呼吸检测阶段; 2)根据指示器输出的当前呼吸方式引导信号的方法进行呼吸,所述指示器在不同的呼吸检测阶段输出不同的呼吸方式引导信号; 3)采集当前呼吸检测阶段中的呼吸数据; 4)对所述呼吸数据进行计算,与预设条件进行比较,得到处理结果,所述指示器根据所述处理结果输出呼吸方式引导信号。 本发明提供的呼吸检测模型包括静态肺活量检测模型,用力肺活量检测模型和最大通气量检测模型;所述呼吸检测阶段包括正常呼吸,完全呼气,完全吸气,用力呼气,用力吸气和急促呼吸。 本发明提供的呼吸方式引导信号为正常呼吸引导信号,所述步骤4)为: 根据至少3个正常呼吸气周期的呼吸参数计算呼气末肺容量误差; 当所述呼气末肺容量误差达到肺容量误差阈值时,返回所述步骤2);当所述呼气末肺容量小于肺容量误差阈值时,所述指示器输出下一呼吸检测阶段的呼吸方式引导信号;所述肺容量误差阈值为100毫升; 所述呼吸方式引导信号为完全呼气引导信号,所述步骤4)为: 根据呼吸参数计算完全呼气时呼气末容积变化; 当所述呼气末容积变化达到呼气容积变化阈值时,返回所述步骤2);当所述呼气末容积变化小于呼气容积变化阈值时,所述指示器输出下一呼吸检测阶段的呼吸方式引导信号;所述呼气容积变化阈值为0.025升/秒; 所述呼吸方式引导信号为完全吸气引导信号,所述步骤4)为: 根据呼吸参数计算完全吸气时吸气末容积变化; 当所述吸气末容积变化达到吸气容积变化阈值时,返回所述步骤2);当所述吸气末容积变化小于吸气容积变化阈值时,所述指示器输出下一呼吸检测阶段的呼吸方式引导信号;所述吸气容积变化阈值为0.025升/秒。 以上所述仅是对本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。
权利要求:
1.一种智能肺气肿诊断信息处理系统,其特征在于,所述智能肺气肿诊断信息处理系统包括:
肺部图采集模块,与中央控制模块连接,用于通过CT检查仪采集患者肺部CT图像;
呼吸频率采集模块,与中央控制模块连接,用于通过呼吸检测仪采集患者呼吸频率数据;
声音采集模块,与中央控制模块连接,用于通过声音传感器采集患者声音数据;
中央控制模块,与肺部图采集模块、呼吸频率采集模块、声音采集模块、标注模块、测试模块、诊断模块、评估模块、显示模块连接,用于通过主控机控制各个模块正常工作;
标注模块,与中央控制模块连接,用于通过标注程序对采集的CT图像标注肺气肿区域;
测试模块,与中央控制模块连接,用于通过测试设备对患者肺功能进行测试;
诊断模块,与中央控制模块连接,用于通过诊断程序根据采集的数据对患者肺气肿进行诊断;
评估模块,与中央控制模块连接,用于通过评估程序对患者肺气肿诊断结果进行评估;
显示模块,与中央控制模块连接,用于通过显示器显示采集的患者肺部CT图像、呼吸频率、声音数据及标注结果、测试结果、诊断结果、评估结果。
2.如权利要求1所述的智能肺气肿诊断信息处理系统,其特征在于,所述肺部图采集模块包括:
图像采集模块,与图像处理模块连接,通过CT获取肺部的图像;
图像处理模块,与图像处理模块连接,利用相关的模块对肺部图像进行处理;
图像编码模块,与图像处理模块连接,将处理完成的图像进行编码;
图像处理模块,与图像采集模块、图像处理模块、图像编码模块、图像压缩模块和图像传输模块连接,用以协调各个模块的正常运行;
图像压缩模块,与图像处理模块连接,将编码完成的图像进行压缩;
图像传输模块,与图像处理模块连接,将压缩完成的图像信息进行传递。
3.如权利要求2所述的智能肺气肿诊断信息处理系统,其特征在于,所述图像处理模块包括:
直方图分析模块,对图像的灰度分布进行描述,包括灰度均值、标准差;
图像清晰度增强模块,利用低通滤波、高通滤波、边缘检测等方法对肺部图像进行增强;
轮廓特征提取模块,对肺部图像的边部信息进行提取,其评价标准为轮廓提取精度、速度和稳定性;
颜色空间转换模块,对图像进行灰度处理和彩色处理。
4.如权利要求1所述的智能肺气肿诊断信息处理系统,其特征在于,所述声音采集模块包括:
声音信号源识别模块,根据信号源之间的统计独立特性结合观测信号,将信号源分离出来;
声音信号切换模块,将采集的语音信号转成成系统识别的语音信号,方便进行处理识别;
声音去噪模块,通过利用相应的算法对进行声音进行去噪;
声音增益模块,通过利用相应的软件,实现对音频的自动增益。
5.如权利要求1所述的智能肺气肿诊断信息处理系统,其特征在于,所述评估模块包括:
病症特征信息存储模块,储存大量相关的肺部相关的病症特征信息;
特征获取模块,提取检测出来的肺部特征信息和储存在储存模块中的特征;
特征信息比对模块,将提取完成后的特征信息建立相应的样本,对两个样本的相似度进行计算;
特征相似度计算模块,通过利用相似度计算公式,计算两者特征的相似数值;
病情预测模块,根据计算出的相似数值进行判别,并且根据检测的肺部的相关信息,预测症状情况的未来变化;
评估结果输出模块,将相关的数据信息进行整理分类,并且将排版好的信息输出。
6.一种执行权利要求1~5任意一项所述智能肺气肿诊断信息处理系统的智能肺气肿诊断信息处理方法,其特征在于,所述智能肺气肿诊断信息处理方法包括以下步骤:
第一步,通过肺部图采集模块利用CT检查仪采集患者肺部CT图像;通过呼吸频率采集模块利用呼吸检测仪采集患者呼吸频率数据;通过声音采集模块利用声音传感器采集患者声音数据;
第二步,中央控制模块通过标注模块利用标注程序对采集的CT图像标注肺气肿区域;
第三步,通过测试模块利用测试设备对患者肺功能进行测试;
第四步,通过诊断模块利用诊断程序根据采集的数据对患者肺气肿进行诊断;
第五步,通过评估模块利用评估程序对患者肺气肿诊断结果进行评估;
第六步,通过显示模块利用显示器显示采集的患者肺部CT图像、呼吸频率、声音数据及标注结果、测试结果、诊断结果、评估结果。
7.如权利要求6所述的智能肺气肿诊断信息处理方法,其特征在于,所述智能肺气肿诊断信息处理方法的标注方法如下:
(1)通过图像处理程序完成图像影像报告、CT图像序列输入和图像标准化预处理;
(2)在语音语义提取程序中根据词典的技术和规则模式匹配技术提取影像报告中的特征信息,即有关肺气肿描述的信息;
(3)在肺气肿病灶提取程序中先对肺进行区域式划分,右肺由上自下每个区域的宽度相同,左肺在中间将分成两个区域;然后在肺部区域进行聚类分析提取肺气肿病灶;
(4)根据步骤(3)计算结果计算得到各区域CT阈值,在输出与显示器中将各区域肺气肿区域标注出来,然后根据各区域CT阈值对各区域肺气肿及健康区域进行蒙色,同时对各区域肺气肿病灶位置精确定位,将肺气肿区域显示在CT图像中,并给出肺功能定量分析报告。
8.如权利要求6所述的智能肺气肿诊断信息处理方法,其特征在于,所述智能肺气肿诊断信息处理方法的测试方法如下:
1)从呼吸检测模型中选择当前呼吸检测阶段,所述呼吸检测模型包括多个呼吸检测阶段;
2)根据指示器输出的当前呼吸方式引导信号的方法进行呼吸,所述指示器在不同的呼吸检测阶段输出不同的呼吸方式引导信号;
3)采集当前呼吸检测阶段中的呼吸数据;
4)对所述呼吸数据进行计算,与预设条件进行比较,得到处理结果,所述指示器根据所述处理结果输出呼吸方式引导信号。
9.一种应用权利要求6~8任意一项所述智能肺气肿诊断信息处理方法的信息数据处理终端。
公开号:CN110533658
申请号:CN201910821798.9A
发明人:谢梦双 王伟 肖伟
拥有者:山东大学齐鲁医院
申请日:2019-09-02
公开日:2019-12-03
全文下载